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A N  U N S T E A D Y  P R O B L E M  O F  F R I C T I O N A L  C O N T A C T  

F O R  A C Y L I N D E R  W I T H  A L L O W A N C E  

F O R  H E A T  R E L E A S E  A N D  W E A R  

Yu. A. Pyr'ev  and D. V.  Grilitskii UDC 539.3 

Mechanical interaction of machine elements is inevitably accompanied by friction and wear. Friction 
and wear are fundamental  aspects of ensuring high performance, reliability, and durability of machines and 
mechanisms. Instability of contact parameters (pressure, temperature,  thermoelastic deformations, wear, etc.), 
which disturbs the normal operation of tribocontacts, is a very important  problem. 

The aim of the present paper is to construct and analyze an unsteady solution of the problem of 
thermoelastic contact of a cylinder with a rigid yoke under conditions of frictional heating and abrasive wear 
and also to study the characteristic features of the model, in particular, thermoelastic instability (TEI). 
Goryacheva and Dobychin [1] analyzed the influence of wear coefficients of various types on the value of 
wear using this model problem and ignoring heat production. Morov [2] the studied TEI in structures such 
as radial compactors in the absence of wear. Grilitskii and Kul'chitskii-Zhigailo [3] studied the features of 
thermoelastic contact using as an example two contacting cylinders with their relative rotation. Problems 
of frictional contact have been usually studied for specified compressive forces in a steady-state formulation 
[4, 5]. 

We assume that  the contact region and geometry of the contacting bodies are such that  a one- 
dimensional model can be used. Use of one-dimensional models is justified by the possibility of investigating 
the typical features inherent in actual friction assemblies [1, 5, 6]. 

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  An elastic heat-conducting cylinder of radius r0 is inserted into a 
rigid yoke with tension u0 (Fig. 1). The cylinder is rotated with a constant angular velocity w around the z 
axis. A frictional force F = 2rrrofp arises in the region of contact between the cylinder and the yoke, resulting 
in heat production and wear of the cylinder surface. Let us assume the abrasive-wear law according to [1, 7]. 
The heat transfer between the cylinder and the yoke obeys Newton's law. 

In our case, in which the cylinder displacement along the z axis equals zero and the displacements u~ 
are only functions of t ime t and radial coordinate r, the tempera ture  O(r,t), the contact pressure p(t), and 
the cylinder wear u~(t)  are to be found. 

To solve this problem, one must integrate the system of differential equations of quasi-static unrelated 
thermoetasticity [8], 

02 1 0  1 l + v  0 
0r  2 ur(r,  t) + -r -~r ur(r, t) - -~ ur(r, t) = a - - 1  u --0r 0(r, t), 

(1.1) 02 1 0 0 
Or 2 0 ( r ' t ) + - r - ~ r O ( r ' t ) = k - l - ~ O ( r ' t ) '  r e ( O ,  ro), t e ( O ,  tc), 

subject to the mechanical conditions 

t) = 0, 

the thermal conditions 

0 
2 rr r A-~r O ( r t ) ~ O, r --~ O, 

ur( o,t)= t (0, to), 1.2) 

0 
A--~rO(ro, t) + ao0(ro,t) = fwrop(t) ,  t E (O, tc), (1.3) 
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and the initial conditions 

O(r,O) = O, r E (0,r0). (1.4) 

The cylinder wear is proport ional  to the work of frictional forces [1, 7]: 

t 

u~(t) = K ~ o  f p(n)d,, 0 < t < t~. (1.5) 
0 

The radial stresses for the cylinder are found from the formula 

- -  ~ - -  U r  - -  c t O  . ~r 1Z2u ~ u 0 r u r +  l + u  r 

In (1.1)-(1.5), E is the Young modulus; u, )~, k, a, f ,  ao, and Kw are the Poisson's ratio, heat conductivity, 
thermal diffusivity, temperature-expansion factor, friction, heat-transfer coefficient, and wear rate of the 
cylinder material, respectively; and p(t) = -O'r(r0, t) is the contact pressure. The  t ime of contact tc is 
determined as the t ime at which the contact pressure is nonnegative, i.e., p(t) ~ 0 at t E (0, tc). 

2. R e p r e s e n t a t i o n  of  t h e  S o l u t i o n .  Let us introduce dimensionless quantities 

R = r/ro,  7"= t / t , ,  

Bi = aoro/,~, 

and reference parameters 

fl = 2Eak/[A(1  - 2u)], v = w i f e / w , ,  7-c = to~t,, 

= K w E 1 / f ~ ,  E1 = E/[(1 + v)(1 - 2u)] 

t ,  = w ,  1 = ro/k  2, p, = Eluo/ro ,  O, = uo/[2a(1 + v)r0]. 

Using the Laplace integral transform [9], we can write the solution of boundary-value problem (1.1)-(1.5) as 

O(R, T) = 0.v ~ ~X,(s.,) exp (~.,.),  p(.) = P*V r~=lZ: ~r.~'(~.,) exp (~mT-), 
r n = l  

~r (2.1) 
u w ( 7 - ) = u o [ l + v  ~ ~Al(Sm)exp(srn7-)] 

m=1 Sma'(Sm) 

where 

d A(s) s=sm = 0.5{Dm[(Bi + 2)sin + vfBi] + Cm[2Bi + sT,, + v(f - 1)1}; 

A~(sm)  = Bi Cm + stuD.,; A3(R,~.,) =/0(Ryes); A2(~m) = s . , D . .  - ~ A I ( ~ ) ;  

A(s) = sAl (s )  - vA2(s); O m =  I1( sV~-'~)/x/T~; C,,  = I0(X/T~m); 

m = 1 and 2; In(x) are modified nth-order Bessel functions of the first kind; and sm are roots of the 
characteristic equation A(s) = 0 (m = 1, 2, . . . ) .  Studies show that  normally Im s m =  0 for m = 3, 4, . . . .  
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For m = 1 and 2, the roots lie, depending on the problem parameters, in the right-hand or left-hand complex 
half-plane s. 

If ~ < ~l [~l = 1/(1 + Bi/2)], the roots are negative for v < v2, complex-conjugate with a negative real 
part for v2 < v < vl, complex-conjugate with a positive real part for Vl < v < v3, and positive for v3 < v. 
Curves of the real and imaginary parts of the roots sl and s2 are shown in Fig. 2 by solid curves versus the 
dimensionless velocity v (( = 0.4 and Bi = 1). Curves 1 and 1' (2 and 2') correspond to the real and imaginary 
parts of the root sl (s2). 

For ~ > ~1, the roots Sl and s2 always lie in the left-hand complex half-plane s. They are negative for 
v < v2, complex-conjugate for v2 < v < v3, again negative for v3 < v < v4, and, for v4 < v, the roots s2 and 
s3 are complex-conjugate and the root sl is negative. Thus, for v = vm (m = 1 , ~  the properties of the roots 
of the characteristic equation change. 

The velocity v3 versus the parameter ~ for different Blot numbers is plotted by the solid curves in 
Fig. 3. Curves 1-5 correspond to Bi=0 .1 ,  0.5, 1.0, 2.0, and 5.0. 

The value of 7r/Ires1 can be correlated with the contact time re: the larger Ires1, the shorter the 
contact time. The quantity Resl  > 0 reflects the increase in the contact characteristics and their extreme 
values .  

Expanding the function A(s) into a power series in the neighborhood of zero, for small values of s, we 
can write the roots Sl and s2 as 

v ( 1 - ~ / ~ l ) - V ~ 1 7 6 1 7 6  ~2 = (1 -t- B i / 4 )  -1 vo = 2Bi. (2.2) 
s , , 2  = 2 / 6  - v ( 1  - ' ' 

The changes in the real and imaginary parts of approximation of the roots sl and s2 versus the 
dimensionless velocity v are shown in Fig. 2 (~ = 0.4 and Bi = 1) by dashed curves. 

Relations (2.2) allow one to write approximate expressions for vm, m = 1, 2, 3. Thus, vm ~ vm, m = 1, 
2, 3, where 

1 + ~/~1 q: 2 q ( ( 1  + ~Bi/4)/~2 
vo~1 ~,~ = vo m = 2, 3. 

- 6 - ( 1  - , 

The dimensionless velocity v3 versus the parameter ~ for different Bi values is shown in Fig. 3 by dashed 
curves. Curves 1-5 correspond to Bi = 0.1, 0.5, 1.0, 2.0, and 5.0. 

3. Ana lys i s  o f  t h e  S o l u t i o n .  Taking into account the properties [9] of the Laplace transformants of 
the solution, we obtained asymptotics of characteristics of thermoelastic contact for the initial time: 

0( i, ~-)/0, = v2 , f f - ~  + O(rl'5), p(~')/p, = 1 + v(1 - ~)," + O(r2), u~,(r)/uo = v~r + O(r2). 

We analyze special cases. In the absence of convective heat transfer (Bi = 0), the contact pressure and 
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wear for an arbitrary t ime take a simple form: 

p ( r ) / p .  = exp [ - -v (~ -  1)r], 

for ideal convective heat transfer (Bi = oo), 

p ( r ) / p .  = e x p ( - ~ r ) ,  

uw(r)/uo =~(I- exp[-v(~-- l)r]}/(~ -- 1); 

uw( )/u0 = 1 - e x p  = v r  

The contact characteristics have the same form at small velocities of relative motion if heat production 
is ignored ( f  ~ 0). 

Let us study this problem by analyzing solutions (2.1) and the behavior of the roots of the characteristic 
equation. The parameter ~ = A K w / 2 f ~ k ( 1  + v) describes the hierarchy of wear and thermal expansion. 

If there is no wear (~ = 0) and the velocity v is smaller than the critical velocity vo, the contact pressure 
and temperature enter a steady-state regime, 

pc = p, vo/(vo - v), Oc(n) = O.2v/(vo - v), 

since the heat generation and its removal are mutually compensated in the system. If the velocity v is higher 
than the critical velocity v0, the temperature and contact pressure grow exponentially. The system does not 
cool, and frictional TEl  arises, i.e., a minor external excitation of the system (in our case, compression of the 
rotating cylinder) causes an exponential increase in temperature and contact pressure. 

For 0 < ~ < ~1, i.e., when the thermal expansion exceeds the wear and v ~< v2, the contact time rc = oo 
and the contact characteristics tend to their steady-state values: pc = O, Oe(R) = 0, and u~, = uo. The closer v 
to v2, the longer the t ime required for the attainment of the steady-state regime. In the range of v2 < v < v3, 
the contact time is limited. The minimum contact time is observed for velocities v ~ (v2+v3)/2, i.e., when Imsl 
acquires a maximum value. When the velocity v approaches v3, the peak values of the contact characteristics 
increase. If the velocity v is higher than the critical velocity v3 (the region above the corresponding curves in 
Fig. 3), frictional TEl  is observed, i.e., the contact characteristics grow exponentially as exp (s lr) .  

For ~ /> ~l, i.e., when the wear is larger than the thermal expansion and v ~ v2, the contact 
characteristics tend in time to a steady-state solution of the problem. For v >/ v2 (Bi > 0), the contact 
time rc is limited although a steady-state solution formally exists. As the slip velocity increases, the contact 
time decreases. 

The contact pressure for ~ >/ 1 always tends monotonically to zero, in contrast to the case 0 < ~ < 1. 
in which it has a maximum in the absence of thermoelastic instability. 

4. N u m e r i c a l  R e s u l t s .  To illustrate the theoretical studies of the behavior of the contact 
characteristics, we perform a numerical analysis of the solution of the problem for various values of the 
coefficient ~, which describes the value of wear, and for various velocities v; Bi = 1 (~1 = 0.67). 

For a steel cylinder [a = (14- 10-6)~ -1, A = 21 W l ( m - ~  k = 5.9-10 -6 m2/sec, v = 0.3, and 
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E = 190 �9 109 Pal and for r0 = 3 �9 10 .2 m and u0 = 1 �9 10 -6 m, the normalization parameters are as follows: 
t. = 153 sec, p. = 1.22 �9 107 Pa, and 0. = 0.92~ 

Figures 4 and 5 show the contact pressure p(r)/p, and wear uw(r)/uo versus the dimensionless time r 
(the Fourier number). The solid, dashed, and dotted curves correspond to dimensionless velocities v = 5, 10, 
and 25, respectively. Curves 1-3 are plotted for ~ = 0.2, 0.4, and 0.8. 

For ~ = 0.2, we have v3 = 8, v2 = 0.9, and Vl = 2.7 (53 = 7.3, 52 = 0.9, and 51 = 2.9). TEI arises for 
v > v3 (dashed and dotted curves). 

For ( = 0.4, we have v3 = 21.9, v2 = 0.65, and Vl = 4.1 (53 = 17.1, 52 = 0.65, and 51 = 5). TEI is 
observed for v > v3 (dotted curves). With an increase in the velocity, the contact time decreases, the peak 
values of the contact pressure and temperature increase, and the wear also increases. 

For ( = 0.8, there is no TEI for all values of the velocity v. With an increase in the velocity, the contact 
time is reduced, and the peak value of the contact temperature and the wear increase. 

For a fixed velocity, an increase in the wear rate ( leads to a smaller contact time, a more intense 
increase in wear in the initial stage, and also to a smaller final value of wear and a smaller contact time. 

Let us sum up the results. 
1. An explicit solution of a spatially one-dimensional problem of frictional contact was constructed and 

analyzed. 
2. Conditions for the occurrence of frictional thermoelastic instability were determined: Bi E [0, co) 

and 6 v 6 [v3, 
3. Allowance for wear leads to a higher critical velocity v3 at which thermoelastic instability arises, 

and for ~ > ~1, i.e., when wear dominates over thermoelastic expansion, frictionM TEI disappears altogether. 
Thus, for the given model the wear is a stabilizing factor, and this is confirmed by the results of [2]. 

4. For the given model of frictional contact, TEI arises not only when the roots of the characteristic 
equation are located in the right-hand complex half-plane of the Laplace-transform parameter s (v > vl and 

< ~1) but also when they have a zero imaginary part (v >~ ca). The latter condition distinguishes the 
obtained conditions from the commonly accepted conditions. 

5. Analytical expressions for the characteristic velocities were determined, which allows one to predict 
the behavior of the frictional contact characteristics in time. 
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